期货均线交易模型 期货单均线交易
商品期货交易策略的数学模型
商品期货交易在当前中国的经济体系中占据着很重要的作用,投资者都希望从大量的期货交易中获取一定的利润,但是期货交易作为一种投机行为,交易者置身其中往往要承担很大的风险,本文研究了商品期货交易中灶蚂的一些问题,给出了获取较大收益的交易方式。问题一:我们首先利用SPSS中的模型预测方法给出了橡胶期货交易各项指标在9月3号这天随时间推移的波动图,又给出了利用Matlab软件作出的成交价与各个指标的相关性图表。分析所作的图得出的结论是商品期货的成交价与B1价、S1价具有显著相关性,与成交量、持仓增减、B1量、S1量也具有相关性而与总量不具有相关性。最后利用SPSS软件双变量相关分析进一步确认其相关性指标。为了对橡胶期货价格的这些变化特征进行分类,我隐缺埋们作出了成交价19天的波动图,并以持仓量为例分析其他指标的变化特征,将七项指标分成扮腔了上涨和周期波动两类。
问题二:本文采用了回归分析的方法建立价格波动预测模型。首先介绍回归分析的基本原理与内容,叙述了回归分析中用到的最小二乘法,之后在第一问的基础上建立回归分析的数学模型,得出函数关系,算得价格的波动趋势并与实际数据对比,再分析模型中的残差数据,验证所建立的回归模型合理性。
问题三:为建立收益最大化的交易模型,本题我们分析价格的波动数据后,借助移动平均线的理论方法,再分析价格的“高位”与“低位”,得出买点卖点。建立交易模型后,利用MATLAB软件分析出合适的交易时机,并画出图形,利用所给数据根据建立的模型计算收益。
期货是怎样交易的
越来越多的投资者嗅到了期货的钱,很多人通过期货赚了一桶金。当然也有投资者在期货上栽了跟头,那么个人想玩期货避免利益损失需要注意哪些问题呢?
期货交易具有浓厚的投机氛围,要求投资者反应迅速,对信息高度敏感,意识到第一个进场的机会才能取胜。从某种意义上说,期货是机会主义的。在某些因素的影响下,有些信息是非常明改樱显和显著的。这些信息的影响是一眼就能看出来的,所以一定要对信息嗅觉敏感。一些表面上看起来没有联系的信息,如果投资者深入挖掘,肯定会发现其中的一些因素,然后先利用起来。
有些投资者靠灵感做期货,但灵感不是心血来潮,而是经过深思熟虑后对趋势的理解,他们自我感觉良好。如果投资者的灵感能做到内心的平静和宁静,通常可以跟着直觉走赚钱。当然,有时候当你持仓但行情并没有按照你预期的方向发展,你肯定会感到不安。这种情况下,你要及时认清止损。
从某种意义上说,期货市场可以说是国民经济的晴雨表。在许多情况下,一条消息可以恰当地衡量对期货的影响。所以投资者要学会判断新闻的真实性。毕竟很多消息不一定核扮丛真实有效。所以投资者一定要判断这些消息的真假,了解消息的时效性。分析新闻的重要性是一个重点。
个人投资期货要善用消息做决缺神策。期货市场很容易受消息影响,有时候技术指标控制不住。由此可见,消息对期货的重要性。投资者要学会如何从一堆消息中找到最有利的消息,利用消息抓住市场,跟风,实现利益最大化。
期货可以用量化交易吗
期货可以使用量化交易,而且量化交易所占的比例越来越高,以基金等大资金账户为主。
量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲念岁旅观的情况下作出非理性的投资决策。
拓展资料:
量化投资和传统的定性投资本质上来说是相同的,二者都是基于市场非有效或弱有效的理论基础。两者的区别在于量化投资管理是“定性思想的量化应用”,更加强调数据。
量化交易具有以下几个方面的特点:
1、纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。
2、系统性。具体表现为“三多”。
一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;
二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;
三是多数据,即对海量数据的处理。
3、套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。
4、概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。
量化投资技术包括多种具体方法,在投资品种选择、投资时机选择、股指期货套利、商品期货套利、统计套利和算法交易等领域得到广泛应用。
量化交易一般会经过海量数据仿真测试和模拟操雀纯作等手段进行检验,并依据一定的风险管理算法进行仓位和资金配置,实现风险最小化和收益最大化,但往往也会存在一定的潜在风险,具体包括:
1、历史数据的完整性。行情数据不完整可能导致模型与行仔凳情数据不匹配。行情数据自身风格转换,也可能导致模型失败,如交易流动性,价格波动幅度,价格波动频率等,而这一点是量化交易难以克服的。
2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生爆仓现象。
3、网络中断,硬件故障也可能对量化交易产生影响。
4、同质模型产生竞争交易现象导致的风险。
5、单一投资品种导致的不可预测风险。
为规避或减小量化交易存在的潜在风险,可采取的策略有:保证历史数据的完整性;在线调整模型参数;在线选择模型类型;风险在线监测和规避等。
期货如何程序化交易
方法:1、前提是你必须有自己的期货交易账户,每个期货公司都可以开,现在不用出门就可以用手机在线开户。
2、其次,要选择合适的交易软件。其中交易开拓者的软件是最好编程的,很多交易团队基本都在用这个软件。确定账户和交易软件。
3、剩下的就是如何用编程语言编写策略,并将其输入交易软件。编程其实并不难。在程序化交易中,程序化只占程序化交易的30%。好的编程可以简化代码,提高运行速度,增加交易策略的多样性和完整性,实现一些复杂的策略。
4、如果没有这方面的编程能力,可以参加期货交易的相关培训课程。另外70%主要是策略、仓位设置、交易品种选择、程序化交易心态控制、网络设置等的组合管理。
拓展资料:
1、战略的确定。一个成功的量化交易系统的开发过程必须是恰当的。如何找到一个成功的量化交易策略,是构建量化交易体系的基础。无论是基本面还是技术面,都可以用量瞎模化的方法进行分析,进而得出量化的交易策略。比如,从根本上说,GDP的增长和货币流通量的增加可以用定量的方法来分析和描述。技术上,移动平均线和指数smma是物理和化学策略思想的来源。
2、经典理论。很多量化投资策略思路来源于传统经典投资理论,比如经典商品期货技术分析主要包括技术分析的理论基础、道指理论、图表介绍、趋势基本概念、主要反转形态、持续形态、交易量和仓位兴趣、长期图表和商品指数、移动平均线、摆动指数和相反意见、盘中点图、三点转向和优化点图、艾略特波浪理论、时间周期等等。这些经典理论有的有具体的指标和具体的应用皮神饥理论,有的只有理论,需要根据理论生成具体的应用指标来完成策略的测试。因此,经典投资理论可以通过量化思维将理论中的具体逻辑量化为指标或事件形成交易信号,通过信号优化检验实现经典理论的投资思路。这种方式可以有效实现经典理论,同燃返时也可以从原有的经典理论中衍生出周边的投资方法,是量化策略发展初期的主流模式。
3、逻辑推理。逻辑学的战略思维大多来源于宏观基础信息,其量化战略思维是通过对宏观信息的量化处理,梳理出符合宏观基础信息的量化模型。典型的量化策略包括行业轮动量化策略、市场情绪轮动量化策略、上下游供需量化策略等。这种策略思路来源非常广泛,数据一般不规范,很难形成标准。目前,许多对冲基金都有类似的想法来生成量化策略产品。
4、总结经验。经验总结是量化战略思想的另一个主要来源。在使用量化策略交易之前,市场上有大量经验丰富的投资者,其中许多人在长期稳定回报方面表现突出。因此,他们对市场的看法和交易思路成为了量化策略开发者的模仿对象,有经验的交易者也愿意量化一些他们觉得相对固化、能够获得稳定回报的交易策略,最终可以用机器自动交易,只监控交易。这可以大大减少交易中消耗的能量。在这个前提下,出现了一个与经验丰富的交易者合作的量化策略团队。