期货主力数学模型 期货主力思维
期货定价模型
布莱克-斯科尔斯模型2009年08月09日星期日 20:23布莱克-斯科尔斯模型(Black-Scholes Model,亦有译为布莱氏伍克-休斯),简称BS模型,是一种为期权或权证等金融衍生工具定价的数学模型,由美国经济学家迈伦·斯科尔斯与费雪·布莱克所最先提出,并由罗伯特·墨顿完善。该模型就是以迈伦·斯科尔斯和费雪·布莱克命名的。1997年迈伦·斯科尔斯和罗伯特·墨顿凭借该模型获得诺贝尔经济学奖。然而统计学上的肥尾现象影响此公式的有效性。
[编辑] B-S模型5个重要假设
1、金融资产收益率服从对数正态分布;
2、在期权有效期内,无风险利返弊率和金融资产收益变量是恒定的;
3、市场无摩擦,即不存在税收和交易成本;
4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);
5、该期权是欧式期权,即在期权到期前不可实施。
[编辑〕模型
C= S* N(D1)− e− r* T* L* N(D2)
其中:
C—期权初始合理价格
L—期权交割价格
S—所交易金融资产现价
T—期权有效期
r—连续复利计无风险利率H
σ2—年度化方差
N()—正态分布漏核族变量的累积概率分布函数,
商品期货交易策略的数学模型
商品期货交易在当前中国的经济体系中占据着很重要的作用,投资者都希望从大量的期货交易中获取一定的利润,但是期货交易作为一种投机行为,交易者置身其中往往要承担很大的风险,本文研究了商品期货交易中灶蚂的一些问题,给出了获取较大收益的交易方式。问题一:我们首先利用SPSS中的模型预测方法给出了橡胶期货交易各项指标在9月3号这天随时间推移的波动图,又给出了利用Matlab软件作出的成交价与各个指标的相关性图表。分析所作的图得出的结论是商品期货的成交价与B1价、S1价具有显著相关性,与成交量、持仓增减、B1量、S1量也具有相关性而与总量不具有相关性。最后利用SPSS软件双变量相关分析进一步确认其相关性指标。为了对橡胶期货价格的这些变化特征进行分类,我隐缺埋们作出了成交价19天的波动图,并以持仓量为例分析其他指标的变化特征,将七项指标分成扮腔了上涨和周期波动两类。
问题二:本文采用了回归分析的方法建立价格波动预测模型。首先介绍回归分析的基本原理与内容,叙述了回归分析中用到的最小二乘法,之后在第一问的基础上建立回归分析的数学模型,得出函数关系,算得价格的波动趋势并与实际数据对比,再分析模型中的残差数据,验证所建立的回归模型合理性。
问题三:为建立收益最大化的交易模型,本题我们分析价格的波动数据后,借助移动平均线的理论方法,再分析价格的“高位”与“低位”,得出买点卖点。建立交易模型后,利用MATLAB软件分析出合适的交易时机,并画出图形,利用所给数据根据建立的模型计算收益。
请问“数学模型”如何运用在期货投机交易中
金融数学,又称数理金融学等,是利用数学工具研究金融现象,通过数学模型进行定量分析,以求找到金融活动中潜在的规律,并用以指导实践。金融数学是现代数学与计算机技术在金融领域中的结合应用。目前,金融数学发展很快,是目前十分活跃的前言学科之一。
金融数学的发展曾两次引发了“华尔街革命”。上个世纪50年代初期,马克维茨提出证券投资组合理论,第一次明确地用数学工具给出了在一定风险水平下按不同比例投资多种证券,收益可能最大的投资方法,引发了第一次“华尔街革命”。
马克维茨也因此获得了1990年诺贝尔经济学奖。1973年,美国金融学家布莱克和舒尔斯用数学方法给出了期权定价模型,推动了期权交易的发展,期权交易很快成为世界金融市场的主要内容,成为第二次“华尔街革命”。2003年诺贝尔经济学奖第三次授予以数学为工具分析金融问题的美国经济学家恩格尔和英国经济学家格兰杰,以表彰他们分别用“随着时间变化易变性”和“共同趋势”两种新方法分析经济时间数列给经济学研究和经济发展带来巨大影响。
不仅仅是理论界在金融数学领域取得巨大的成就。实务投资派也运用金融数学模型在市场中取得了巨大的盈利。
数学教授出身的“模型先生”詹姆斯·西蒙斯(JamesSimons)连续两年在对冲基金经理人收入排行中位列第一。2005年,西蒙斯成为全球收入最高的对冲基金经理,净赚15亿美元,去年,他收入高达17亿美元,差不多是索罗斯的两倍。68岁的西蒙斯是世界级的数学家,也是最伟大的对冲基金经理之一。他24岁就出任哈佛大学数学系教授,曾与著名华裔数学家陈省身一同创立了Chern-Simons几何定律,该定律成为理论物理学的重要工具。西蒙斯和他的文艺复兴科技公司是华尔街一个彻底的异类,公司从不雇用华尔街人士,而是靠数学模型捕捉市场机会,用电脑作出交易决策,是这位超级投资者成功的秘诀。
“对积理论”也是用数学模型捕捉市场机会,量化资金管理,用计算机系统发出交易信号,通过大量的短线交易,达到稳定累盈的结果。
“数学模型”方法是针对或参照某种事物系统的特征或数量相依关系,采用形式化数学语言,概括的或近似地表述出来的一种数学结构。
采用“数学模型”做交易,相对于常用的技术分析、基本分析等方法有如下优势:
首先,交易更加精确量化。
技术分析、基本分析等方法的缺陷都是不能做到完全的精确量化。
技术分析主要是用来分析交易的进场、出场点的,是抉择交易时机的一种方法。技术分析理论的主要的代表有道氏理论、波浪理论、江恩法则等。主要分析方法有K线(日本线)理论、切线理论、形态理论、量价关系理论。主要的分析指标包括:趋势型指标、超买超卖型指标、人气型指标、大势型指标等内容。技术指标大多是线型的公式来表达价格涨落与历史价格成交量之间的关系。由于价格运动的复杂性用线型公式是无法概括表述的,所以存在技术指标时好时坏的现象。用几套技术指标叠加做出的系统,同样解释不了价格的运动。因为大多技术指标编制的思路及出发点雷同,趋向性一致,所以造成了好用都好用,不好用仔核都无奈的现象。技术分析是成千上万证券市场投资者经验的结晶,它更像一门艺术。其一,在它的各种理论体系中,从定义到规则,都带有明显的经验总结色彩,不具备严格的数念核掘学推理过程;其二,它包含的理论很多,每位技术分析家都有不同的见地,这些分支理论并不能形成一整套相互辉映的理论体系。任何一种技术分析方法都不能完全适应于市场,每一种方法都有自己的盲点。
使用技术分析、基本分析无法精确量化交易。“数学模型”是采用离散采样的方法,对数据进行统计分析。根据证券市场的特性,价格是离散型的随机变量。“数学模型”会将随机变量的所有可能取值及相应的概率描述出来,模拟离散型随机变量的概率分布。通过概率进行资金分配,能够量化每笔交易手数。对交易的把控更加精确量化。
其次,能够克服人性在交易时的弱点。
在交易当中,最可怕莫过于人性的弱点。人的“贪婪”和“恐惧”在交易的氏茄过程当中会毫无遗漏的表现出来。有盈利的时候“惜卖”,亏损后又“死抱”;容易受到周边议论的影响,等等这些都会造成交易的随意性,导致亏损。用“数学模型”各种规则都是固定量化的,计算出来的结果也是确定、唯一的,能够避免投资者在交易时主观的判断。我们所要做的就是相信系统,严格执行。
下面,我们对“数学模型”类交易方法的特点进行总结,深一步讨论“数学模型”在交易中的应用。
1.认为价格的运动是随机与有序并存。它并不是完全随机,也没有固定的规律,它的运动具有一定的“人为特征表象”。整体而言,市场是有效的,但仍存在短暂的或局部的市场无效性,可以提供交易机会。
2.主要通过对历史数据的离散采样统计,找出金融产品价格、宏观经济、市场指标、技术指标等各种指标间变化的数学关系,发现市场目前存在的微小获利机会,并通过杠杆比率进行快速而大规模的交易获利。
3.通过高频次且快速的日内短线交易来捕捉稍纵即逝的机会。通过大量的交易次数对冲风险,累积盈利。
4.要求市场具有高活跃度和流动性。要求交易品种价格的运动具有连续性,以及成交量的活跃性。这一点主要是为了保证交易的可成交性。
5.运用现代计算机技术将“数学模型”转化为交易系统,通过计算机的海量运算能力实现应用。
天龙博弈主力资金指标公式
fx=(bp-q)/b。天龙博弈指标公式的竖雹核心思想是在投资中控制风险,其公式为fx=(bp-q)/b。其中,fx表示投资者应该投入的资金比例,b表示每次投资的收益率,p表示投资成功的概率,q表示投资失败的概率。天龙博弈指标公式是一种用于评估股票市场余并帆风险的数学模型,它可以帮助投资者更好地了解市场的波动性和风险程度。该公式由美国经济学家约翰凯利于 1956年提出蔽备,被广泛应用于股票、期货、外汇等金融市场。