python 期货量化交易 python 期权量化交易
python量化交易半个月可以学会吗
python量化交易半个月可以学会的。
如果已经有了Python基础,半个月可以入门的,如果没有Python基础,就先学Python,学一两个月有了基础后,再结合量化或乱缓交易的模型,边学Python语言,边学以Python实现量化模型,上手也会很快的。
大家可能觉得搞量化的人就是整天和大量数据打交道,用一行行代码写出复杂的模型,然后没完没了地Run,在回测和优化中挣扎,沉浸在数学和统计海洋里的一群人。
实际上,这只是表面现象。虽然每个搞量化的人必须会写代衫模码,也必须陪扮具备扎实的数学功底,在开发策略的过程中,的确需要分析大量数据,不断做回测和优化,但是,这一切的背后是强大的金融思维和对金融市场的深刻理解在支撑的。
换句话说,如果你没有经济、金融的完整知识体系和工作经验,或者没有正确的、科学的思维方式,无论数学多么地好,也很可能在做无用功;即便编程多么在行,也只能沦为码农一枚(没有歧视程序员的意思哦)。
反过来说,如果你具备科学的思维和逻辑,并发现了经济、金融的某些规律,想做Quant就不难了。接下来,你只需花点时间学习编程工具,好好利用数据和代码为你实现自己的想法。
用python做量化交易要学多久
5个月。
python凭借其突出的语言优势与特性,已经融入到各行各业的每个领域。一般来说,python培训需要脱产学习5个月左右,这样的时长才能够让学员既掌握工作所需的技能,枣液还能够积累一定的项目经验。当然如果你想要在人工智能的路上越走越远,则需要不断的积累和学习。
python培训的5个月时间里,有相当大一部分时间是在实战做项目,第一阶段是为期一个月学习python的核心编程,主要是python的语言基础和高级应用,帮助学员绝槐获得初步软件工程知识并树立模块化编程思想。学完这一阶段的内容,学员已经能够胜任python初级开发工程师的职位。
扩展资料:
Python开发基础课程内容包括:计算机硬件、操作系统原理、安装linux操作系统、linux操作系统维护常用命令、Python语言介绍、环境安装、基本语法、基本数据类型、二进制运算、流程控制、字符编码、文件处理、数据类型、用户认证、三级菜单程序、购物车程序开发、函数、内置方法、递归、迭代器、装饰器、内置方法、员工信息表开发、模块的跨目录导入、常用标准库学习,b加密并岩友\re正则\logging日志模块等,软件开发规范学习,计算器程序、ATM程序开发等。
参考资料来源:百度百科-Python量化交易从入门到实战
怎么学习python量化交易
下面教你八步写个量化交易策略——单股票均线策略
1确定策略内容与框架
若昨日收盘孝唯价高出过去20日平均价今天开盘买入股票
若昨日收盘价低于过去20日平均价今天开盘卖出股票
只操作一只股票,很简单对吧,但怎么用代码说给计算机听呢?
想想人是怎么操作的,应该包括这样两个部分
既然是单股票策略,事先决定好交易哪一个股票。
每天看看昨日收盘价是否高出过去20日平均价,是的话开盘就买入,不是开盘就卖出。每天都这么做,循环下去。
对应代码也是这两个部分
definitialize(context):
用来写最开始要做什么的地方
defhandle_data(context,data):
用来写每天循环要做什么的地方
2初始化
我们要写设置要交易的股票的代码,比如兔宝宝(002043)
definitialize(context):
g.security='002043.XSHE'#存入兔宝宝的股票代码
3获取收盘价与均价
首先,获取昨日股票的收盘价
#用法:变量=data[股票代码].close
last_price=data[g.security].close#取得最近日收盘价,命名为last_price
然后,获取近二十日股票收盘价的平均价
#用法:变量=data[股票代码].mavg(天数,‘close’)
#获取近二十日股票收盘价的平均价,命名为average_price
average_price=data[g.security].mavg(20,'close')
4判断是否买卖
数据都获取完,该做买卖判断了
#如果昨日收盘价高出二十日平均价,则买入,否则卖出
iflast_price>average_price:
买入
eliflast_price<average_price:
卖出
问题来了,现在该写买卖下单了,但是拿多少钱去买我们还没有告诉计算机,所以每天还要获取账户里现金量。
#用法:变量=context.portfolio.cash
cash=context.portfolio.cash#取得当前的现金量,命名为cash
5买入卖出
#用法:order_value(要买入股票股票的股票代码,要多少钱去买)
order_value(g.security,cash)#用当前所有资金买入股票
#用法:order_target(要买卖股票的股票代码,目标持仓金额)
order_target(g.security,0)#将股票仓巧蠢培位调整到0,即全卖出
6策略代码写完,进行回测
把买入卖出的代码写好,策略就写完了,如下
definitialize(context):#初始化
g.security='002043.XSHE'#股档谨票名:兔宝宝
defhandle_data(context,data):#每日循环
last_price=data[g.security].close#取得最近日收盘价
#取得过去二十天的平均价格
average_price=data[g.security].mavg(20,'close')
cash=context.portfolio.cash#取得当前的现金
#如果昨日收盘价高出二十日平均价,则买入,否则卖出。
iflast_price>average_price:
order_value(g.security,cash)#用当前所有资金买入股票
eliflast_price<average_price:
order_target(g.security,0)#将股票仓位调整到0,即全卖出
现在,在策略回测界面右上部,设置回测时间从20140101到20160601,设置初始资金100000,设置回测频率,然后点击运行回测。
7建立模拟交易,使策略和行情实时连接自动运行
策略写好,回测完成,点击回测结果界面(如上图)右上部红色模拟交易按钮,新建模拟交易如下图。写好交易名称,设置初始资金,数据频率,此处是每天,设置好后点提交。
8开启微信通知,接收交易信号
点击聚宽导航栏我的交易,可以看到创建的模拟交易,如下图。点击右边的微信通知开关,将OFF调到ON,按照指示扫描二维码,绑定微信,就能微信接收交易信号了。
python量化哪个平台可以回测模拟实盘还不要钱
Python量化投资框架:回测+模拟+实盘
Python量化投资模拟交易平台 1.股票量化投资框架体系 1.1回测实盘交易前,必须对量化交易策略进行回测和模拟,以确定策略是否有效,并进行改进和优化。作为一般人而言,你能想到的,一般都有人做过了。回测框架也如此。当前小白看到的主要有如下五个回测框架: Zipline:事件驱动框架,国外很流行。缺陷是不适合国内市场。 PyAlgoTrade:事件驱动框架,最新更新日期为16年8月17号。支持国内市场,应用python 2.7开发,最大的bug在于不支持3.5的版本,以及不支持强大的pandas。 pybacktest:以处理向量数据的方陪蔽式进行回测,最新更新日期为2个月前,更新不稳定。 TradingWithPython:基于pybacktest,进行重构。参考资料较少。 ultra-finance:在github的项目两年前就停止更新了,最新的项目在谷歌平台,无奈打不开网址,感兴趣的话,请自行查看吧。 RQAlpha:事件驱动框架,适合A股市场,自带日线数据。是米筐的回测开源框架,相对而言,个人更喜欢这个平台。 2模拟模拟交易,同样是实盘交易前的重要一步。以防止类似于当前某券商的事件,半小时之内亏损上亿,对整个股市都产生了恶劣影响。模拟交易,重点考虑的是程序的交易逻辑是否可靠无误,数据传输的各种情况是否都考虑到。当下,个人看到的,喜欢用的开源平台是雪球模拟交易,其次是wind提供的模拟交易接口。像优矿、米筐和聚宽提供的,由于只能在线上平台测试,不甚自由,并无太多感觉。雪球模拟交易:在后续实盘交易模块,再进行重点介绍,主要应用的是一个开源的easytrader系列。 Wind模拟交易:若没有机构版的话,可以考虑应用学生免费版。具体模拟交易接口可参看如下链接:http://www.dajiangzhang.com/document 3实盘实盘,无疑是我们的终极目标。股票程序化交易,已经被限制。但对于万能的我们而言,总有解决的办法。当下最多的是破解券商网页版的交易接口,或者说应用爬虫爬去操作。对我而言,比较倾向于食灯鬼的easytrader系列的开源平台。对于机构用户而言,由于资金量较大,出于安全性和可靠性的考虑,并不建议应用。 easytrader系列当前主要有三个组成部分: easytrader:提供券商华泰/佣金宝/银河/广发/雪球的基金、股票自动程序化交易,量化交易组件 easyquotation:实时获取新浪/ Leverfun的免费股票以及 level2十档行情/集思路的分级基金行情 easyhistory:用于获取维护股票的历史数据 easyquant:股票量化框架,支持行情获取以及交易 2.期货量化投资框架体系一直待在私募或者券商,做的是股票相关的内容,对期货这块不甚熟悉。就根据自己所了解的,简单总结一下。 2.1回测回测,貌似并没有非常流行的开源框架。可能的原因有二:期货相对股票而言,门槛较高,更多是机构交易,开源较少;去厅乱宴年至今对期货监管控制比较严,至今未放开,只能做些CTA的策略,另许多人兴致泱泱吧。就个人理解而言,可能wind的是一个相对合适的选择。 2.2模拟+实盘 vn.py是国内最为流行的一个开源平台。起源于国内私扮银募的自主交易系统,2015年初启动时只是单纯的交易API接口的Python封装。随着业内关注度的上升和社区不断的贡献,目前已经一步步成长为一套全面的交易程序开发框架。如官网所说,该框架侧重的是交易模块,回测模块并未支持。能力有限,如果对相关框架感兴趣的话,就详看相关的链接吧。个人期望的是以RQAlpha为主搭建回测框架,以雪球或wind为主搭建模拟框架,用easy系列进行交易。